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ABSTRACT 

This report describes the internal organization of the SPUR floating 

point chip. The primary representation of the FPU microarchitecture is its 

functional level executable hardware description. This description serves 

as the primary chip design verification tool at both the functional and the 

layout levels. The text of this paper gives the operation sequence for the 

chip's instructions and details its datapath and control structures. 

1. INTRODUCTION 

The SPUR Floating Point Unit is a single chip, tightly coupled co-processor intended 

for the SPUR multi-processor workstation[HEL85]. This chip boosts the floating point 

performance of the SPUR architecture by executing the most common floating point 

operations directly. The supported arithmetic operations include addition, subtraction, 

multiplication and division on 80 bit operands. These operations require 4, 4, 8 and 20 

processor cycles respectively; these cycles may be overlapped with the central processor. 

All arithmetic is compatible with the IEEE standard P754[IEE85]. With software support, 

the SPUR system will achieve a high performance implementation of the complete stan

dard. 

This paper focuses on the internal architecture of the SPUR FPU. The primary 

representation of the FPU microarchitecture is the executable description written m 

I SPUR is sponsored by DARPA under contract order 482427-25840 by NAVALEX. Addition&.l computer 

resources provided by DARPA (order *-'811) monitored by Nav&.l Electronic Systems Comma.nd under Contract 

No. N0003Q-84-C-008g. 
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Slang, a hardware description language[FoD83]. This description defines the functions the 

chip will perform and outlines the structure of the microarchitecture implementation. 

The hardware is described at the abstract logic level with no implementation technology 

implied. Because it contains both structure and function, the description will assist in 

simulation at both the functional and transistor levels. Thus, it provides the link between 

the architectural specification of the chip and its VLSI implementation. 

Because the chip is fully specified by its executable description, this paper adds no 

new information to it. Rather, it clarifies and annotates the hardware description. To 

begin, an overview of the chip architectural description including the CPU interface 

specification is given. This section provides the necessary background for understanding 

the chip internals. The details of the microarchitecture are then presented with separate 

sections devoted to the chip datapath and control. Finally, the strategies for testing the 

hardware description are discussed. This paper does assume familiarity with the SPUR 

multi-processor workstation project; for reference see [HEL85] and [Kat85]. 

2. CHIP ORGANIZATION OVERVIEW 

2.1. Introduction 

The work presented in this paper emphasizes the implementation of the SPUR FPU 

rather than its design rationale. However, an overview of the chip's functional require

ments is necessary to understand the design constraints placed on its implementation. For 

this chip, there are two distinct sources of design constraints. First are those constraints 

imposed by the purely architectural features of the chip, including its instruction set, sup

ported data types and special capabilities needed for IEEE compatibility. The chip archi

tectural description as given in [Lee86] has had the most profound effect on the internal 

organization of the chip. Its specifications in large part determined the structure of the 

datapaths where almost all of the chip's functions are performed. This report assumes 

familiarity with the FPU architectural description document; its contents will only be 

summarized here with emphasis on the implications for chip implementation. 

In addition, specific constraints are imposed on the chip control by the requirements 

of the FPU-CPU interface. A detailed specification of these requirements may be found in 

[HaK86]. A more complete explanation of the chip control organization is given in this 

paper to supplement the purely functional requirements seen in the interface specification 
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document. Finally, a brief overview of the Slang hardware description language and simu

lator [FoD83] provides a background for understanding the coding of the hardware 

description. 

2.2. Architectural Description 

The overall goal of the SPUR FPU chip is to increase the performance of IEEE arith

metic as much as possible by implementing the most commonly used operations, data 

types and data representations in hardware. While only a subset of the full standard can 

be implemented on a single chip, the hardware provides the primitives for the software 

implementation of the rest of the standard. The SPUR FPU adds both instructions and 

data types directly to the SPUR workstation architecture and therefore is known as a 

tightly coupled co-processor. Consequently, the FPU mirrors the SPUR load/store archi

tecture and in fact uses the same instruction format. 

Table 1a shows the complete arithmetic operation set required by the IEEE standard 

highlighting the operations implemented by the SPUR FPU chip. 

Table la. IEEE Required Operations and SPUR FPU Instructions 

Type of Operation SPUR FPU Instruction 

add, subtract FADD, FSUB 

multiply, divide FMUL, FDIV 

remainder, square root 

floating point CVTD,CVTS 

format conversion LD_DBL,LD_SGL 

round to integer 

decimal conversion 

comparison FP_CMP 

The primary arithmetic set for the chip consists of five operations (add, subtract, multi

ply, divide and compare) implemented in a single data format. The complete instruction 

set for the SPUR FPU chip is given in Table 1 b. Note that two convert instructions and 

three data transfer operations were added to the primary arithmetic set to enhance the 

performance of data types and operations not directly supported by the hardware. The 

memory operations that are supported allow the transfer of all floating point data types 

directly to and from the chip using addresses generated by the CPU. 

The single data format supported by the hardware (known as "extended format") is 

illustrated in Figure 1 along with the other two memory formats. The extended format 
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Table lb. SPUR FPU Instructions 

ARITHMETIC and DATA TRANSFER INSTRUCTIONS 

Instruction Syntax Instruction Semantics 

FADD Rd,Rsl,Rs2 FPURd <- FPU Rsl + FPU Rs2 
FSlJB Rd,Rsl,Rs2 FPURd <- FPU Rsl - FPU Rs2 
FMUL Rd,Rsl,Rs2 FPURd <- FPU Rsl * FPU Rs2 
FDIV Rd,Rsl,Rs2 FPURd <- FPU Rsl / FPU Rs2 
FCMP cond,Rsl,Rs2 FPSW(cond) <- result relation 
FABS Rd,Rsl,O FPURd <- FPU Rsl with sign = 0 
FNEG Rd,Rsl,O FPURd <- FPU Rsl with inverted sign 
FMOV Rd,Rsl,O FPURd <- FPU Rsl 
CVTD Rd,Rsl,O FPU Rd <- FPU Rsl rounded to double 
CVTS Rd,Rsl,O FPURd <- FPU Rsl rounded to single 

LOAD INSTRUCTIONS 

Instruction Syntax Instruction Semantics 

LD_SGL Rd,Rsl,RC FPURd <- M [(Rsl + RC) 
LD_DBL Rd,Rsl,RC FPURd <- M [(Rsl + RC) 
LD_EXTI Rd,Rsl,RC FPU Rd <- M [(Rsl + RC) 
LD_EXT2 Rd,Rsl,RC FPURd <- M [(Rsl + RC) 

STORE INSTRUCTIONS 
Instruction Syntax Instruction Semantics 

ST_SGL Rs2,Rsl,SC FPU Rs2 -> M [(Rsl + SC) 
ST_DBL Rs2.Rsl,SC FPU Rs2 -> M [(Rsl + SC) 
ST_EXTl Rs2,Rsl,SC FPU Rs2 -> M [(Rsl + SC) 
ST_EXT2 Rs2.Rsl,SC FPU Rs2 -> M [(Rsl + SC) 

0 

SINGLE S I Exp<7:0> I Fraction<22:0> I I I I I I 

153 52 0 

DOUBLE S I Exp< 10:0> I Fraction<51:0> 

0 

EXTENDED s I Exp<l4:0> I Ill Ill/ 

0 

Fraction<63:0> 

Figure 1. SPUR FPU memory formats. 
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consists of 87 bits containing three numeric fields (sign, exponent and fraction) and one 

field each to describe the data and rounding type of the number. Inside the chip, a 

separate datapath is dedicated to each of the numeric fields. The data type field is used 

to determine whether a number may be handled correctly by the arithmetic hardware, 

while the rounding field is used by the support software to maintain rounding precision. 

As shown in Table 2, the hardware does not implement operations for certain 

representations of numbers [2]. 

Table 2. Exception Detection Cor FPU Operations 

Operand Exception Type Result Exception Type 

Operation Zero Denorm Norm Inr. 

FADD,FSUB H H H trap 

FMUL H trap H trap 

FDIV H/trap trap H trap 

FP.CMP H H H trap 

CVTS,CVTD H H H trap 

FNEG,FABS H H H H 

FMOV H H H H 

Legend: 
H: Hardware must produce correct result. 

trap: Hardware signals exception but does not produce result. 

D: Hardware signals exception and produces invalid result. 

- : Cannot occur. 

NaN Ovft. UndO. 

trap D D 
trap D D 
trap D D 
trap - -
trap D D 

H - -
H - -

In general, the hardware can generate a correct answer for "ordinary" arithmetic opera

tions. Arithmetic exceptions are for the most part simply detected and posted by the 

hardware; software support is required to generate the correct value for the excepted 

operation. Subsetting both the data formats and data representations implemented in 

hardware greatly simplifies the chip design. 

Besides new instruction and data types, the FPC adds sixteen registers to the SPUR 

architecture. Each of these registers can store one operand in the extended format. Fif

teen of these registers may be used for floating point operands while one is reserved for 

the Floating Point Status Word. The FPSW, shown in Figure 2, contains enable bits for 

exceptions as well as the rounding mode to be used on each floating point operation. In 

addition, the hardware posts information on each completed arithmetic operation, includ

ing the types of the input operands and the type(s) of exceptions that occurred. Keeping 

this information in the state of the FPU allows arithmetic exceptions to be handled well 

2 See the IEEE standard document for a discussion of number representations. 

lnxct. 

D 
D 
D 

-
D 
-
-
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v - Overflow 
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Exception Flags 

u - Underflow 

0 - Opera.nd Trap 

OT2 - Oper&nd Type of 2nd opera.nd 

OTt - Opera.nd Type of 1st operand 

EE - Enable Exception 

El - Enable Inexact 

Figure 2. SPUR Floating Point Status Word. 

after the instruction that created them has finished. 

2.3. CPU Interface Requirements 

As mentioned above, the SPUR FPU is a tightly coupled co-processor. This means 

that the instruction and state of the FPU are accessed in a manner transparent to the 

assembly language programmer. The implementation of the hardware interface of the co

processor also involves tight coupling with the SPUR CPU. The interface is synchronous, 

with the FPU decoding in parallel each instruction fetched by the CPU to determine 

whether that instruction is to be executed by the FPU. The interface control structure 

allows the CPU to execute instructions in parallel with FPU arithmetic operations. Con

secutive FPU arithmetic operations are serialized, however these operations may execute 

in parallel with FPU load and store operations as well as with CPU instructions. Finally, 

on FPU memory operations the CPU actually generates the address for the instruction; 

the FPU need only transfer the data itself. Thus, the interface provides enhanced perfor-

mance of co-processor functions at a minimum overhead. 

Figure 3 illustrates the signals used to implement the co-processor interface. Because 

the CPU fetches instructions from an internal buffer, the instruction currently fetched by 

the CPU must be sent on dedicated wires (fpuOPCODE, fpuRSl, fpuRS2, fpuRD) to the 
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1 
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Figure 9. Signals for Co-processor Interface. 

co-processor. In addition, the CPU sends one line (fpuNewinstr) to indicate the validity of 

the instruction sent. The CPU may not assert fpuNewinstr for several reasons, including 

a pipeline stall due to consecutive co-processor instructions. Another signal from the CPU 

(fpuSuspend) indicates a pipeline stall specifically due to a miss in the processor cache. 

This signal not only halts the issue of new FPU instructions but also may prevent 
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instructions from completing. 

Because a cache miss may result in a page fault trap, instructions that were issued 

after the offending load or store must not change the state of the processor. This require

ment imposes timing constraints on the execution of arithmetic instructions. Each arith

metic instruction must contain at least two execute cycles and a distinct write cycle. This 

is because FPU instructions may be suspended and possibly killed during the two execute 

cycles just like CPU instructions. This makes the semantics of FPU suspensions and traps 

the same as those for the CPU. 

\Vhereas the CPU signals are provided for control, the FPU returns status informac 

tion for its portion of the interface. The fpuBusy signal, for example, is asserted only 

w bile the FPU is executing an arithmetic operation. This signal causes the CPU to stall if 

another FPU arithmetic instruction is fetched while it is asserted. The other two status 

lines indicate exception and branch conditions for the last completed FPU instruction. 

These two lines are attached directly to bits in the FPSW, allowing the support software 

to set or clear them directly. 

None of the precise timing of the above signals has been given here. A large number 

of possible timing sequences arise from the parallel execution of CPU and FPU with the 

possibility of traps and/or pipeline suspensions. Also, although the discussion of this 

interface has been in terms of the SPUR FPU, the interface is intended for general applic 

cation co-processors. A discussion of the timing sequences for this interface as well as the 

extensions required for generality are beyond the scope of this paper. For a more com

plete discussion of the SPUR co-processor interface, please see [HaK86]. 

2.4. Slang Overview 

As mentioned above, the hardware description for the SPUR FPU was written m 

Slang. The term Slang may refer either to the hardware description language or its 

corresponding simulator. Slang the language is actually an extension of Lisp: i.e. a set of 

Lisp macros and functions that support constructs for describing hardware. These con

structs include functions for describing the operation of the circuit as well as constructs 

for describing its partitioning. Slang the simulator is a set of functions that provide a 

purely event driven simulation of a Slang circuit model. 
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In Slang, a circuit model consists of a collection of objects called nodes. Each node 

contains an update function and a list of zero or more nodes grouped into a depends func

tion. In the simulator, a node corresponds to a single event whose value is evaluated by 

executing its update function every time one of the nodes listed in its depends function 

changes. Thus, a circuit is built from nodes by describing its components using the node 

update function and its interconnection network using the depends function. 

Because Slang is an extension of Lisp, it has several capabilities not ordinarily found 

in hardware description languages. For example, although nodes may evaluate to tri-state 

logic values, they are not limited to that type of representation. In fact, a node may con

tain arbitrary Lisp functions in its update clause and have any Lisp data object as its 

value. Thus, hardware may be described at different levels in Slang; differing amounts of 

detail may exist even in the same circuit description. Users of Slang have the full capabil

ity of the Lisp interpreter for debugging and interaction. Furthermore, they may load 

arbitrary Lisp macros or functions along with the hardware description and have those 

functions execute as if they were built into Slang. These capabilities make Slang a very 

flexible system suited for many different kinds of hardware simulation. As will be seen, 

much of this flexibility was used in generating the description of the SPUR FPU. 

3. FPU DATAPATH ORGANIZATION 

3.1. Overview 

As seen in Figure 4, the entire chip is split into separate sections for memory and 

arithmetic operations. The load/store portion consists of data packing and multiplexing 

logic and contains separate units for load and store operations. The arithmetic logic is 

broken up into a section for addition/subtraction of floating point fractions (called the 

"fraction box''), a section for fraction multiplication and division (the "multiply/divide 

section"), and a section for handling exponent, sign and type fields of operands ("exponent 

section" for short). 'Within the arithmetic section, the fraction, exponent, sign and type 

datapaths all operate concurrently, exchanging information at several points in the com

putation. 

This split between the load/store and arithmetic units is more than physical; the two 

section operate concurrently and share only the register file between them. The register 

file may be shared without conflict because it is dual ported; two operands may be read or 
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Figure 4. FPU Chip Organization 

written simultaneously. Since all reads occur at the beginning of an instruction, there is 

never a conflict between reads for stores and reads for arithmetic operations. Although 

two writes may occur simultaneously, the load/store and arithmetic sections use different 

busses for writing. Also, the A/B busses in the arithmetic data.path are different from the 

F 
In 
s 

PU/CPU 
terface 
lpa.il 

I 
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busses in the register file. This allows the memory and arithmetic sections to operate 

independently between data transfers to the register file. 

In this section of the paper, the chip datapaths will be analyzed from both the opera

tion and implementation point of view. First the How of operands for each instruction 

through the various datapath components will be detailed, outlining the major datapath 

components and the interconnections between units. Then, the implementation of each 

chip datapath component is fully detailed. 

3.2. Instruction Flow 

Although many FPU instructions share components of the chip's datapaths, not all 

operations use these components in the same way. Table 3 repeats the set of instructions 

implemented by the FPU, taxonomizing them according to the path taken by operands 

through the chip. 

Table 3. SPUR FPU Instruction Classes 

Arithmetic Instructions 

uses add/subtract uses multiply /divide uses data transfer 

datapath only datapath hardware only 

FADD FMl.JL FMOV 

FSUB FDIV FNEG 

CVTS FABS 

CVTD 
FP_CMP 

Memory Instructions 

Needs alignment/packing only Needs exponent, type field handling 

LD_EXTl. LD_EXT2 LD_DBL,LD_SGL 

ST_EXTl, ST_EXT2 ST _DBL.ST _SGL 

r-;ote that there are several variations of data routes even within the set of memory and 

arithmetic operations. Each of these routes (indicated as instruction subsets) requires a 

substantial portion of logic dedicated to their implementation. Within the subsets, how

ever, the differences are primarily in the control of the data path rather than the data path 

components themselves. Note that this section provides a complete but not fully detailed 

description of instruction sequences, a full description of the exact signals involved is given 

in Appendix A of this report. 
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3.2.1. Memory Operations 

All load and store operations follow a path going directly between the chip data pins 
and the register file via bus A. However, there is a significant difference in the amount of 
logic required to process data in extended format versus single or double memory format. 
As seen in Figure 5, the extended format data can be field extracted for loads and field 
packed for stores since the SPUR extended memory format is isomorphic to the FPU 
internal register format. Since only 64 pins are supplied to the FPU, two instructions are 
needed to load (or store) an 87 bit extended format value. The LD_EXTI instruction 
loads the exponent, sign and type fields, while LD_EXT2 loads the fraction. Finally, both 
loads and stores require separate master/slave latches to handle consecutive memory 
operations. 

Figure 6 illustrates the logic required to convert from the other two SPUR memory 
formats to register format and vice versa. 'Whereas the sign bit needs no conversion, the 
fraction portion requires alignment to the most significant bit positions of the register file 
bus. Also, the bit to the left of the binary point (called the hidden bit) must be made 
explicit at this time. Conversion of the biased exponent to internal format involves a 
complement and sign extend operation from the proper bit position. Also, the case of a 
zero input exponent must be handled specially. This exponent corresponds either to a 
zero or to a denormalized number, depending on whether the fraction is zero or not. Flip
ping the LSB is sufficient for denormalized number conversion; a special exponent value 
must be produced for the num her zero. An "all ones" detector along with the fraction 
and exponent zero detection circuitry are needed to produce the data type bits for the 
number. Note that these are not present in single or double memory format. This 
conversion is only complete for ordinary, zero and denormalized numbers, however only 
these numbers ever will be processed by the arithmetic section. Numbers that are not 
handled by the arithmetic section (infinity and NaN) will have their type fields set 
correctly. 

Single and double memory format stores are simplified greatly because the correct 
operand data type field is present already. Only an exponent conversion for zero or 
denormalized numbers (as indicated by the data type field) is required. The other data 
portions for the number only need to be selected and packed into the proper bit positions. 
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3.2.2. Arithmetic Operations 

All arithmetic instructions must pass through the exponent, sign and type handling 

logic as well some portion of the fraction box to produce a result. The three classes of 



- 15-

instructions (add/subtract, multiply/divide and data transfer) differ in the manner and 

extent to which they use these datapath components. The largest class of instructions, 

consisting of add, subtract, compare and two converts, uses all of the above mentioned 

components. The data transfer instructions need only the register read/write logic in 

these datapaths to accomplish their tasks. The multiply and divide instructions generate 

partial results in a completely dedicated datapath. Even these instructions require the 

fraction datapath to produce a final result, however. 

3.2.2.1. Add/Subtract 

Figure 7 illustrates the sequence of operations for add, subtract, compare and con

vert operations. Although the basic sequence for each datapath is simply a single pass, 

the exponent and fraction units must operate concurrently and exchange information. For 

adds and subtracts, this sequence begins with the reading and latching of the input vec

tors from the register file. The operand fractions must first be aligned to compensate for 

the differences in exponents. This is done by computing the difference in the exponent 

datapath and sending the result to a multiplexor and shifter in the fraction datapath. 

The operand with the lesser exponent is selected and passed through a right shifter. Each 

operand is then fed to the fraction adder/subtractor for generation of the intermediate 

result. In parallel with the result calculation, the greater exponent is selected and fed to 

the exponent adder/ subtractor. 

Once the intermediate result has been computed, it must be rounded and normalized 

to form the final result. The normalization step involves both shifting and zero detection 

with the shift amount and zero detect signal being sent to the exponent adder/subtractor. 

For a non-zero fraction, the result exponent is then computed by adding or subtracting 

the greater exponent by the normalizing distance. A special value exponent is inserted 

into the destination register for a zero exponent. The fraction zero detect signal is also 

sent along with the greater fraction selection signal to the sign determiner. The result 

sign is a simple combination of these signals and the input signs; it is computed in parallel 

with the result exponent. The result data type value also is generated from the fraction 

zero detect signal. Finally, the result exponent is checked for underflow or overflow. 

Only after this operation has finished are the various results written back to the register 

file. 
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Although the above mentioned datapath flow has been described exclusively in terms 

of the add and subtract instructions, very little needs to be added to describe the compare 

and convert instructions. The compare instruction behaves exactly like a subtract opera

tion except that the result write is inhibited. Instead the result sign and zero fraction 

detect signals are combined to set the proper result condition in the FPSW. The fraction 

computation for a convert instruction differs only in that the active operand is routed to 

the alignment shifter and shifted by a fixed amount. Since the other operand of a convert 

instruction is always zero (3], the rest of the fraction datapath may be used without 

modification. The result exponent requires an addition of the fixed alignment amount 

along with the adjustment for normalization. This is done with two passes through the 

exponent adder /subtractor; the result of the first computation is fed back via bus B to its 

left hand input. Finally, the sign and type determining logic are bypassed on a convert 

operation since the result sign is always the sign of the active operand. 

3.2.2.2. Multiply /Divide 

As seen in Figure 8, the flow of operands for the multiply instruction requires the 

coordination of the fraction box and the multiply /divide datapath at the beginning and 

the end of the operation. The multiplier is able to load two of its input operands directly 

from the register file, however it also requires the complement of one of the operands. 

This complementation is accomplished by subtracting the input operand from zero using 

the fraction box adder/subtractor and sending the result to the multiplier one cycle after 

the uncomplemented version. 

The actual multiplication step is carried out using an 8-bit version of Booth's algo

rithm. This involves selecting and encoding one byte from the multiplier then using that 

byte to select four instances of the multiplicand or its complement. These instances are 

added to the previous partial product to form the new partial product for that step. The 

two parts of this loop are pipelined; a new byte is selected and encoded while the multipli

cands selected by the previous byte are being accumulated. 

To increase performance, the partial product accumulation is done using carry save 

addition. Thus, the partial products are encoded as a sum and carry vector during the 

3 This is because register Zero (RO) is hardwired to zero. 
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entire multiply operation. At the end of the operation, the final sum and carry vector 

must be added together to produce the final result. T~ese vectors are therefore sent 

directly to the inputs of the fraction box adder/subtractor. From then on, the final result 

is formed by addition, rounding and normalization, exactly as it would be for the add 

instruction. 

Although the divide instruction uses some of the hardware mentioned above, the 

sequence of operations is quite different. First, the divisor is loaded directly from the 

register file into the same latches occupied by the multiplicand and multiplier on multi

plies. Like the multiplicand, the divisor must be complemented in the fraction box and 

sent to the divide unit later. The dividend, however, is loaded into the fraction box input 

latch and is held there for one-half cycle. It is then transferred not to the multiplier latch 

but to one of the latches that previously held the partial product; a zero is placed in the 

other partial product latch. 

The main divide loop uses a repeated bit quotient estimation scheme described in 

[Tay85]. On a given loop iteration, a two bit estimate is made of the entire quotient. 

This estimate is a function of the six most significant bits of the partial remainder (which 

for the first step is the dividend) and the four most significant bits of the divisor. Because 

the quotient may have been overestimated on a previous iteration, a given estimate may 

have the range (-2 < X < 2). The quotient estimate is encoded as a three bit signed 

magnitude value, positive and negative estimates are kept in different latches. The quo

tient estimate also selects an instance of the divisor or its complement which will be added 

to the previous partial remainder to form a new one. This selection is made such that the 

partial remainder (whether positive or negative) always is reduced in magnitude by this 

operation. Thus, with each step the precision of the quotient estimate increases and the 

partial remainder converges to zero. 

At the end of the final quotient estimate step, the negative quotient estimate vector 

must be subtracted from the positive quotient estimate vector to obtain the final result. 

To preserve accuracy, however, the sign of the final remainder must be included in the 

subtraction. To do this, the partial remainder Yectors must be sent to the fraction box 

for an addition to form the final remainder. The final remainder itself remains at the out

put of the fraction box adder/subtractor; only its sign is fed back to the divider. Only 

after this first addition has taken place can the quotient estimate be sent to the fraction 

box. As with the result of a multiply, the final quotient is rounded and normalized before 
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being written to the register file. 

The sequence of operations for computing the other data portions (sign, exponent 

and type) of the result is exactly the same for multiplies and divides" The exponent com

putation is a two step process similar to that used in the convert instructions. The initial 

result is formed by either adding (for multiply) or subtracting (for divide) the two input 

exponents. This result is then fed back to the exponent adder/subtractor via bus B and 

adjusted by the normalizing distance of the final fraction result. The result sign for both 

instructions is the exclusive-OR of the input signs; it is latched early in the operation. 

Finally, the data type of the result is computed in the manner already described for the 

add and subtract instruction. 

3.2.2.3. Data Transfer 

The FPU data transfer instructions (fmov, fneg, fabs) have a very simple operation 

sequence since only the sign of the input operand is ever modified. The single operand is 

read from the register file and latched directly into the destination latches of the various 

datapaths. A small piece of logic is placed in the path of the sign bit to compute the 

correct sign; the other parts of the operand are latched directly from the bus. The values 

of the destination latches are then written back to the register file without further manio 

pulation. Thus, no extra datapath hardware is required to implement these instructions" 

3.3. Implementation 

3.3.1. Fraction Box 

The use of the fraction datapath is not limited to the add and subtract instructions; 

the unit produces the result fraction for all arithmetic operations. This unit is also used 

to complement one of the input operands for the multiply and divide instructions and to 

compute the final remainder of a division. To perform these functions, the fraction data

path contains the following four components: 

1) Operand binary point alignment 

2) Adder/Subtractor 

3) Normalization and Rounding 
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4) Exponent Adjustment 

These components correspond to the basic operations required to complete a floating point 

add or subtract. The busses and main datapath components are 65 bits wide; in addition 

three bits must be maintained separately to ensure correct rounding of the result. Figure 

9 gives a detailed view of this unit. 

The operand alignment datapath is used exclusively for the add and subtract instruc

tions.. The alignment operation involves routing the fraction with the lesser exponent 

through the right side of the datapath and a right shifter. The shift amount and fraction 

routing is controlled by the exponent difference of the two operands. This right shift gen

erates the rounding bits for the add and subtract instructions. The two most significant 

bits shifted out of the operand become the guard (G) and round (R) rounding bits. The 

rightmost round bit is generated by ORing the rest of the bits that were shifted out; it is 

called the sticky ( S) bit. Because the bits shifted out of the operand can be condensed, 

the aligning shifter need only handle a shift amount of up to 66 bits. Also, the exponent 

shift amount signals are condensed into a 7 bit shift vector and a single signal for all shift 

amounts greater than 127. 

The aligned fractions are latched at the input to the main adder/subtractor in phil 

of the second execute cycle. Since phi 1 of the first execute cycle is dedicated to reading 

the input operands from the register file, a little more than two phases are allocated for 

operand alignment. The exponent box produces the control signals for alignment; the 

shifter must wait one phase for these results. Thus, the actual fraction shifting is done in 

phi3 and phi4 of the first execute cycle. 

At this point the operands are ready for the actual addition or subtraction operation. 

Note that the operands generated by multiplication and division have the same magni

tude, hence they are multiplexed into the unit directly at this point. Subtraction in this 

unit is performed by complementing the left operand and adding it to the right operand. 

Since the three rounding bits are always associated with the right operand, the size of the 

main adder/subtractor is reduced because the rounding bits do not participate in the sub

traction. 

Since both addition and subtraction are performed, the output of this section is a 69 

bit two's complement value. The value consists of a sign bit, two bits to the left of the 

binary point, 63 bits to the right of the binary point and three rounding bits. The result 
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is immediately returned to positive magnitude form by exclusive-ORing all of the 68 right

most bits with the intermediate sign bit. Thus, the final output of this unit is a 68 bit 

positive number. The number is correct if the result of the adder/subtracter was positive; 

otherwise the value must be incremented to finish complementing it. The entire 

addition/subtraction operation is estimated to take two clock phases. 

The basic operations that remain to be performed by this unit include rounding, nor

malization and incrementing. Normalization here means bringing the uppermost one in 

the number to the bit position just to the left of the binary point. This requires that the 

value be shifted right by one or left by an amount ranging from zero to 66 bits. Since 

rounding must be done to the normalized number, it would seem that normalization 

would be the first thing to do in this section. That is however NOT correct because the 

number may still need to be incremented to finish the complementation; this could in turn 

change the normalization shift amount [4]. Furthermore, the rounding may also require 

that the number be incremented even if it was originally positive. Given these con

straints, the primary design goals for this section of the datapath are to use one incre

menter for both rounding and complementation and to make only one adjustment to the 

exponent. 

The solution that satisfies the above design criteria exploits the fact that different 

rounding and normalizing actions are taken based on the value of the input. Only those 

numbers that require a shift amount of zero or one (left or right) need to be rounded. 

Although it should be clear that shifting left by more than two clears the rounding bits, 

the case of shifting left by two is not obvious. Numbers in that range (0.25 < x < 0.5) 

must have resulted from a subtraction where the lesser operand was shifted right by no 

more than one. Hence all significant bits are shifted out of the rounding bits by the nor

malization shift left of two. These numbers are therefore treated differently from those 

numbers that require a normalizing left shift of greater than one. 

As seen in Figure 10, the input to this section is first tested to see if the required 

shift amount for normalization is right by one (Rl ), zero (Pass), left by one (Ll) or left by 

greater than one ( GTl ). Numbers with shift amount greater than one are passed without 

shifting to the incrementer; these numbers are incremented only for complementation. 

4 To see this, considering incrementing 0.11111. 
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Figure 10. Details of fraction rounding and normalization. 

Otherwise, the num her is normalized immediately and only the uppermost 63 bits of this 

result are sent to the incrementer; the four least significant bits (called the L, G, R, and S 

bits) are sent to the rounding pia. The pia is also sent the intermediate sign of the 

number so that the need for a complementation increment can be taken into account. 

This pia returns the new value of the L bit, increments the uppermost 63 bits if necessary 

and clears the rounding bits. The uppermost 63 bits of any number will never be incre

mented both for complementation and for rounding, thus only one incrementer is needed. 

Incrementer overflow is handled by ORing the carry output of the incrementer into the 

most significant output bit and by modifying the exponent adjustment amount. 
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After the incrementing is complete, the number consists of at most 67 bits and is 

ready for the final normalization step. The number is passed to a priority encoder; this 

will generate a left shift amount ranging from zero to 66. The encoder generates the shift 

amount in both a "one-hot" encoding that controls the shifter and a binary encoding that 

is used to adjust the result exponent. Also, the priority encoder must detect an all zero 

input and latch that signal for the exponent and type datapaths. The normalizing shifter 

generates the final result for the fraction unit. Currently, the entire rounding and nor

malization process is allocated only two phases. This estimate is probably too optimistic 

from a layout implementation point of view. 

In addition to generating the final result, the normalizing unit must also adjust the 

result exponent to reflect all normalization that was done. Exponent adjustment informa

tion comes from three places of this section, the initial shifter (for the Rl, Pass and Ll 

cases), the incrementer overflow or the priority encoder. The first two sources are mutu

ally exclusive of the third; the correct exponent adjustment will come from the priority 

encoder only in the case where the shift amount before the increment is greater than one. 

Thus, the incrementer overflow and initial normalization information is gathered into a 

single shift amount by combinational logic. The shift GTl signal is then used to choose 

between that shift amount and the value from the priority encoder. The results of this 

section consist of the magnitude of the shift amount and a signal that indicates whether to 

add or subtract that value from the other exponent. 

3.3.2. Multiplier and Divider 

As mentioned before, the floating point unit uses a version of Booth's algorithm for 

multiplication and a repeated quotient estimation scheme for division. Although the prin

ciples of these algorithms are different, each requires a loop where bits from one operand 

(the multiplier or divisor) are repeatedly selected to control the selection of instances of 

the other operand (multiplicand or dividend) or its complement. On each iteration these 

operands are added to the previous partial results to form the new partial results. 

Because of the similarity between the algorithms, the entire accumulator loop (consisting 

of operand selection multiplexors, carry save adder tree and partial result latches) is com

mon to both the multiplier and divider. This sharing of hardware for multiplication and 

division was absolutely necessary to meet the area and performance goals for this data

path section. 
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3.3.2.1. Multiplier 

For multiplication, the operand selection portion of the loop mentioned above con

sumes eight multiplier bits per iteration. As seen in Figure 11, this requires four sets of 

Booth encoders and multiplicand selectors, each of which consumes two multiplier bits. 

To feed these encoders and selectors, each iteration requires an entire byte of the multi

plier plus the high order bit from the previous byte for processing. The nine bits are 

arranged into four groups of three lines, with the high order bit of each group forming the 

low order bit of the next group. These lines are then recoded into four groups where each 

group contains four bits in a "one hot" encoding. Each group then controls a multiplexor 

that selects one of four versions of the multiplicand; these being the multiplicand or its 

complement taken as is or shifted left by one. Since each of these partial results is gen

erated from two multiplier bits, the multiplicand in each multiplexor in the group is 

shifted left by two bits from its predecessor. 

The outputs of the four multiplexors are then added to the two results of the previ

ous step to form two new results. A tree of four carry-save adder rows is required for this 

task. Since four two bit partial results are generated at once, the carry-save adders must 

be 73 bits wide. Although four rows of carry-save adders are required, the order of addi

tion has been arranged so that the critical path through the tree contains only three 

adders. This is accomplished by placing the six input operands into two groups of three 

and adding them in parallel. The four vectors that result are then accumulated in 

sequence to generate the two final result vectors. Once the result vectors have been gen

erated, they are latched into the master of the partial product accumulator latch. A new 

loop begins on the next phase when the slave result latches are loaded. 

Vp to now, no mention has been made of the timing of the multiply loop. Since the 

generation of multiplicands and the accumulation of partial product vectors are indepen

dent, these functions are pipelined. As seen in Figure 12 the shifting and rounding of the 

partial product vectors is done in parallel with multiplicand selection. Each pipelined 

function is estimated to take two clock phases, with the master and slave cycles occurring 

on even and odd clock phases respectively. The entire accumulation process requires 8.5 

loops. The extra half loop in the multiplication is required to finish the evaluation of the 

leftmost bit of the multiplier. The partial product master is latched on even phases so 

that the result of the multiplication (from the last half loop) may be sent to the fraction 

box on the following phase. 
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Note that the partial product vectors must be shifted to the right by eight bits 

before they can be returned to the carry-save adder for the next loop. The eight bits 

shifted out of each result vector are the least significant bits; these must be condensed to 

form the rounding bits for the operation. This is done using the adder and OR gate 

shown in Figure 13. On each iteration, the "partial" sticky bit is fed back to the rounding 

adder while the carry output of the last addition forms the least significant bit of the pare 

tial carry for the next iteration. 

On the final half cycle of the multiply, this circuit must furnish the rounding bits to 

the fraction box. The mapping of these bits is complicated by the fact that the leftmost 

bit of the rounding adder actually belongs in the L (bit 63) position of the fraction unit 

datapath, not in the rounding bits. Thus, the second from leftmost position of the adder 

corresponds to the guard bit of the fraction unit. Furthermore, the multiply unit does 

NOT produce a round (R) bit; using bit five from the adder is not correct. Instead, a zero 

is placed in the round position and the rightmost six bits of the adder are ORed with the 

previous value of the sticky bit to form the final sticky bit. Finally, the carry output 
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3.3.2.2. Divider 

As denoted in Figure 11 the divide instruction actually does not require much addi

tional hardware beyond that needed for the multiply instruction. As mentioned previ

ously, the divider uses the same accumulator/selector loop as the multiplier. Since only 

two quotient bits are generated on each loop, only the topmost of the four selection multi

plexors is used for divisor selection. Only a slight modification is needed to use the partial 

product latches as partial remainder latches; they are loaded with the dividend and zero 

respectively at the beginning of the operation. Also, the new partial remainder vectors 

are shifted left by two bits before taking part in the next quotient estimation. Thus, the 

Rounding 

Bits 
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divider loop on each iteration consumes two bits of the partial remainder and generates 

two bits of quotient. 

Only the quotient estimate hardware is umque to the division instruction. This 

hardware consists of the quotient estimation pia and an eight bit adder for the most 

significant bits of the partial remainder. The topmost six bits of the adder result consti

tute an estimate of the entire partial remainder at each step. Doing eight bits of addition 

rather than just six significantly increases the precision of this estimate and does not 

increase execution time. The remainder estimate is then fed along with the four most 

significant divisor bits into the quotient estimation box. The pla output is a number in 

the range (-2 <== X <== 2) encoded into sign magnitude format to be stored in the quo

tient estimate latches. This value must also be decoded into a "one hot" format to be 

used in the divisor selection unit. 

Unlike the multiply instruction, the divider loop is not pipelined; the quotient estima

tor and dividend accumulator operate as a single piece of logic. Two full clock phases are 

required to traverse the entire loop. The loops are controlled by the partial product mas

ter latch and therefore are timed to end on even clock phases. Each quotient estimate 

vector is a 68 bit quantity consisting of 65 result bits plus three rounding bits for each 

estimate. Thus 34 iterations of the divider loop are required to generate the full quotient 

vectors. 

Note that the loop count figure shown above does not take into account the time 

required to convert the quotient estimate vectors into the final result. As mentioned pre

viously, a two step process is required to obtain the final quotient. First, the two 65 bit 

final remainder vectors are sent to the fraction datapath to be subtracted in order to find 

the sign of the remainder. Then the quotient estimate vectors are sent to the fraction box 

to be subtracted. As seen in Figure 14, one cannot send all 68 bits of both quotient vec

tors to the fraction unit; the unit expects rounding bits from one operand only. Rather 

than enlarge the fraction box adderfsubtractor for this case, the three rounding bits are 

subtracted before being sent to the fraction unit. The rounding bits result should also be 

decremented if the sign of the final remainder was negative. This is accomplished by 

using a two"s complement adder for the subtraction and the complement of the partial 

remainder sign bit as the carry input. Thus, to compute the final result the fraction unit 

is sent two 65 bit operands, the three rounding bits and the carry output of the three bit 

subtractor. The carry output of the three bit subtractor becomes the carry input of the 
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fraction unit adder. 

3.3.3. Exponent Datapath 

The exponent datapath lies on the critical path of all FPU arithmetic instructions 

except for the data transfer operations. Each instruction requires the formulation of a 

preliminary exponent; each instruction except for compare requires that the preliminary 

exponent be adjusted for normalization to form the final result exponent. This final result 

must be checked for underflow or overflow. Also, the add and subtract instructions 

require an indication of the operand with the greater exponent as well as the exact 

amount of the exponent difference for operand alignment. As showu in Figure 15, each of 

these functions is realized with separate arithmetic components known as the difference 
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Note that although exponent operands are 17 bits long, each of the elements in the data

path are 18 bits in length. 

As mentioned above, the exponent difference section must find the greater of the two 

operand exponents and compute the positive difference between them. Since these opera

tions must be done in little more than one phase, this section is implemented using two 

parallel subtractors and selection logic. The exponent difference is sent out in two forms; 
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a 7 bit positive difference vector for differences from 0 to 127 and a signal to indicate 

whether the difference is 128 or more. Also, a signal indicating the greater exponent is 

latched and sent to the fraction box. 

The result section consists of a single adderfsubtractor with control logic. This data

path is itself straightforward, however there are subtleties in its use. For instance, recall 

that all exponents are converted to 17 bit two's complement numbers with a bias of -1; 

this bias must be taken into account when computing intermediate results. Since the bias 

is now only -1, one can keep the correct bias for intermediate results by manipulating the 

carry input of the two's complement add or subtract. To see this, recall that the result 

bias (without adjustment) of an add operation would be -1 + -1 = -2, while for a subtract 

it would be -1 - ( -1) = 0. Note that in the exponent difference section, the result bias of 

the subtraction (zero) is correct; the true difference between the exponents is needed. 

In the add and subtract instructions the result exponent can be computed in one 

ALU step by adjusting the greater exponent by the normalizing distance. However the 

multiply and divide instructions as well the two converts require an additional add or sub

tract to generate a preliminary result. That result is fed back to the adder/subtractor 

using the datapath busses and input latches for the final adjustment. For all instructions, 

a special value must be used for the final result exponent if the result fraction is zero. 

Each pass through the exponent ALU requires one clock phase. 

Finally, logic must be added to the result latch to detect overflowed and underflowed 

exponents. These signals help form the result exception bits for the instruction. The 

detection logic adds almost an extra phase to the result exponent computation. Because 

the exponent is the last data portion computed, result exception detect adds to the execu

tion time of any instruction that requires it. 

3.3.4. Sign and Type Determination 

The sign determination unit consists of combinational logic that must correctly find 

the sign of the result of all arithmetic operations. Fortunately, the equations for deter

mining the result sign of the various instructions are relatively straightforward. In fact, 

the result sign determination for the convert and data transfer operations is done immedi

ately after reading the input sign from the register file by transferring the input sign to 

the result sign late h. 
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The result s1gn for multiplies and divides is not much more difficult; it is the 

exclusive-or of the operand signs. For the instructions add and subtract, the result sign is 

a function of both the operand signs and their relative magnitudes. The relative magni

tudes of the operands are determined from the magnitudes of their exponents, the sign of 

the fraction's intermediate result and the zero fraction detect signal from the fraction box. 

The arrival of these signals from the fraction box determines the timing of this unit. For 

simplicity, all result signs not computed immediately (including multiply/divide) are 

latched in phi2 of the third execute cycle. 

Like the sign determiner, the type datapath consists primarily of combinational logic. 

Besides determining the result data type of all arithmetic operations, this datapath also 

contains the logic to generate the new FPSW for each operation. Note that the result 

data type is not a function of the operand types; instead it is formed from the fraction 

box zero detect signal. The operand types go directly into the new FPSW and also pass 

through logic to determine whether the operand will be correctly handled by the 

hardware. An exception is posted in the FPSW and the result write is cancelled if either 

of the operands are of illegal type. The signals for the other exception and compare bits 

in the FPSW come from the fraction and exponent boxes. Still more logic, however, is 

required to gather these signals and ensure that the new FPSW is written correctly. 

Because the result exception timing is critical, part of this evaluation time will be over

lapped with the final result write. 

3.3.5. Load/Store Datapath and Register File 

Whereas all of the above mentioned sections are devoted to arithmetic operations, 

only one datapath each is needed for all load and store instructions. Data flows directly 

from the chip data pins to the register file in the load datapath; flow is in the opposite 

direction for stores. Access to both the register file and data pins is controlled by placing 

latches at each end of both datapaths. The latches also allow consecutive memory 

instructions to execute. Although much of the logic for the load and store datapaths is 

similar, the two datapaths must be kept entirely separate. This is because the timing of a 

load operation immediately followed by a store causes the two datapaths to be active 

simultaneously. Further details on the timing of these instructions is given in the section 

on the memory control unit. 
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The function of the load datapath has already been described in the section on 

instruction execution. The logic required to perform this function, illustrated in Figure 

16, is implemented in the simplest manner possible. 
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Figure 16. Datapath for load instructions. 

Each portion (fraction, exponent, s1gn and type) of the input data flows through a 

separate logic path. Furthermore, separate nodes implement the different paths that a 

given data portion will take for different types of loads. These paths are brought together 

by multiplexors controlled by signals indicating the exact type of load being executed. 

Also, the datapath logic nodes currently extend from the input slave latch and gate 

directly onto the register file busses. While this particular description style simplifies 

1ster 
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debugging, it does not necessary reflect the structure of the layout implementation. 

The store datapath is organized differently, using separate input latches for each 

data portion. As illustrated in Figure 17, the datapath logic is contained between the 

input latches and the external data bus. 
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Figure 17. Datapath for store instructions. 
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On store instructions, conversiOn is needed only for the exponent; this conversiOn is the 

inverse of the conversion in the load datapath. Implementing the rest of the packing logic 

requires only a little more than one node per type of store instruction. Finally, for simpli

city the external data pins are implemented in Slang not as a bus but as a latch with a 

multiplexor. 
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The register file is a high level bi-directional component, making it the most difficult 

datapath component to implement in Slang. Separate Slang nodes must be used for each 

portion (fraction, exponent, sign and type) of the register file. Each node itself is imple

mented as a generalized Lisp array containing the particular type operand in internal for

mat. The lack of bi-directional Slang nodes is overcome by having the register file nodes 

themselves active only on writes. An intermediate latch is used to hold the data value 

that is read or written on any operation. These latches are multiplexed so that data for 

both reads and writes may go through them. Separate intermediate latches are needed to 

handle transactions on each of the two register file busses. 

4. FPU CONTROL ORGANIZATION 

4.1. Introduction and Overview 

The objectives of the FPU chip control are to sequence through the memory and 

arithmetic instructions handled by the chip and to interface with the SPUR central pro

cessor. The instruction sequences are very simple, and the mechanics of the CPU inter

face are simplified by using the same four phase clock for both CPU and FPU. Complex

ity is introduced, however, by the requirements of the CPU-FPU interface and by chip 

performance criteria. For example, whereas FPU arithmetic operations are sequenced 

serially, the memory operations may be issued at the rate of one per machine cycle. Also, 

FPU memory and arithmetic instructions may proceed in parallel. Finally, all· FPU 

instructions may be suspended or trapped (killed) during their execution. These con

straints are the primary determinants of the FPU control structure. 

An overview of the control section for the FPU chip is shown in Figure 18. This sec

tion consists of separate control units for the memory and arithmetic instructions; both 

these units are driven by the instruction decoder unit. Note that although the memory 

and arithmetic control units both rely on the instruction decoder, they also receive control 

information directly from the FPU-CPU interface. The two kinds of FPU instructions use 

separate control units so that they may operate in parallel and so that different implemen

tation structures may be used to meet the differing requirements of the two units. 

By far the simplest portion of the control is the decoder unit. The decoder unit is 

always active, monitoring the co-processor instruction bus and the fpuNewlnstr signal. 
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Figure 18. Overview of FPU Control. 

On every machine cycle this unit must determine whether a valid FPU instruction has 

been issued and if so send a decoded version of that instruction to the appropriate control 

section. It also decodes the special trap opcode directly into a signal that is sent to the 

other two control units. In all other cases (non-FPC opcode, suspension etc.) the unit 

takes no action. 

Since FPU memory operations are issued once per machine cycle, the memory unit 

control receives input from the instruction decoder on every cycle. These memory opera

tions are considered to be part of the CPU pipeline, furthermore the CPU participates in 

these operations by supplying the memory address. For these reasons, the timing of FPU 

memory operations matches that of the CPU; the memory control unit also uses an 

opcode pipeline for its control structure. Each station in the pipeline is active for exactly 
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one machine cycle; the stations themselves contain a decoded version of the input opcode 

and the value of the destination register for load instructions. The contents of the pipe

line stations control the activities of the load/store datapath directly. Under ordinary 

conditions this pipeline operates continuously; the suspend and trap signals cause the pipe

line to stall or clear respectively. 

\Vhereas the memory control unit handles a pipeline of fixed execution time instruc

tions, the arithmetic control unit only needs to sequence a single instruction. Although 

the instruction sequences themselves are very simple, the instructions have varying execu

tion time and may be suspended or trapped during a portion of their execution. The 

structure of this unit therefore consists of a simple machine cycle counter with a separate 

state machine for handling suspend and trap conditions. This division of control simplifies 

the unit and also allows arithmetic instructions that have been suspended to actually con

tinue execution in the FPU datapath. This is done by letting the cycle counter continue 

during the suspension while delaying the result write using the supervisory state machine. 

Also, the state machine can take input directly from the instruction decoder stage without 

interfering with the operation of the chip datapaths. This allows the write cycle of the 

active FPU instruction to be overlapped with the decoding of the next instruction. 

4:.2. Details of Operations 

4:.2.1. Operation Timing 

Although the memory and arithmetic control machines mentioned above are quite 

different in structure, they use the same operation timing scheme. The timing of control 

machine transitions is dictated by the fact that the fpuSuspend signal arrives in the fourth 

phase (phi4) of a given cycle. For this reason the opcode pipeline and arithmetic state 

machine cannot change state until phil of the following cycle. Control signals that 

depend on this state will not be stable until the next phase; this leaves the problem of how 

to control events that must occur on phi 1 of a cycle. The solution is to use master/ slave 

latches for all state holders and to generate appropriately timed control signals. On a 

given cycle, all events occurring in phi2 are controlled by the master latch while the slave 

is loaded. The slave latch controls signals for all other phases, including phil of the fol

lowing cycle. This provides an effective solution for all execution cycles except the very 

first. As shall be seen, events in phil of the first execution cycle is controlled directly by 
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the instruction decoder logic. 

4.2.2. Instruction Decoder 

The instruction decode unit must monitor the external instruction bus on every cycle 

and begin the execution of the instructions intended for the FPU. Since the instruction 

bus changes on phi3, the decoder has little more than one phase (until phil of the next 

cycle) to perform these functions. As seen in Figure 19, this unit consists of a simple 

opcode decoding filter with logic to decide whether to accept the decoded instruction. 
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The logic to begin the execution of an instruction must run in parallel with the opcode 
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decoder in order for the unit to meet its strict performance criteria. 

To further increase performance, the decoder logic itself attaches directly to the 

opcode pins latch and takes no other signals as input. The decoding logic generates a trap 

received signal directly from the appropriate opcode; this allows that signal to take effect 

immediately. In addition, it genetates two vectors of decoded opcode signals; one each to 

represent the type of memory or arithmetic operation encountered. These vectors will 

contain no asserted signals if a trap or non-FPU opcode is encountered. The fpuNewinstr 

signal directly controls the latching of the instruction bus; no other signal is needed. 

The conditions under which a decoded FPU instruction will begin execution depend 

upon whether it is a memory or arithmetic operation. A memory operation will be 

accepted only if the FPU is not suspended (i.e. fpuSuspend disasserted). On the other 

hand, an arithmetic operation begins whenever the arithmetic unit is not busy (fpuBusy 

disasserted). Both machines will simply refuse to latch the output of the opcode decoder 

if the specified conditions are not met. 

In addition to initializing the control machines, the decoder unit must control the 

reading of the regi:lter file to begin an instruction successfully. Because register file decod

ing and reading take place in phil, the decoder unit must send the proper register 

specifier to the file in phi4. Note that while the store operation reads from the destination 

register number, all arithmetic operations read from the two source registers. Thus, at 

least a partial opcode decoding is required to send the correct register specifier. The 

actual register file read takes place regardless of whether the instruction that was decoded 

is ready to execute. Rather than inhibiting the read operation itself. the arithmetic con

trol unit will not connect its busses to the register file busses if the arithmetic datapath is 

busy. The memory unit behaves similarly by refusing to latch the output of the register 

file if the instruction pipeline is suspended. Register file reads are inhibited this way 

because it is easier from a circuit implementation point of view to control a few latches 

and gates than the entire register file. 

4:.2.3. Memory Control Machine 

Figure 20 illustrates the four stage memory control unit pipeline along with the exact 

format of the contents of each opcode latch. Each of the pipeline latches is clearable, in 

addition the second and third stages use master /slave latches to allow feedback for each 
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Figure 20. Opcode Pipeline for Memory Operations. 

stage. This feedback allows the execute and memory cycles of the pipeline to be repeated 

on a cache miss on either CPU or FPU memory operations. Also, each of the stages is 

cleared whenever a trap is signalled. The last stage (for the write cycle) is different in 
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that it may neither be trapped nor suspended. It takes either the output of the previous 

stage or a zero if the previous stage is suspended. 

Because the CPU handles addressing for all FPU memory operations, load operations 

do not require any action until the third (memory) cycle. The external data latch is 

loaded on phi3 whenever the control pipeline indicates a load operation is present. If a 

cache miss occurs, the fpuSuspend signal will keep the control information for the load in 

the memory stage latch and zero out the write stage latch. In this event, the contents of 

the external data latch are not passed on through the load logic and are overwritten on 

the next cycle. Thus, the load operation may be controlled successfully without monitor

ing the cache hit/miss signals directly. 

The control of the store operation is complicated somewhat by the control of the 

external data pads for output. These pads must be driven starting in phil of the third 

cycle of a store and held until the cache indicates a hit. Because the fpuSuspend signal 

arrives at the end of the previous phase, it is not possible for the control machine to 

decide whether the memory cycle should be repeated and drive the pins accordingly. 

Therefore, the driving of the pads in phil is controlled by the information in the second 

pipeline stage only if the pipeline is not suspended. In all other cases, the pads are con

trolled by the memory cycle stage and the cache hit signals. The cache hit signals are 

used to condition the memory cycle stage because the fpuSuspend signal is not disasserted 

until one phase after a cache hit. 

Although not strictly under the control of the memory unit, it is appropriate to dis

cuss the register file control structure here. The control of the register file is greatly 

simplified by the fact that the file may be addressed as an array. Independent controls 

are still required for reading and writing, and separate signals are needed to handle tran

sactions on each of the two register file busses. \Voile arithmetic operations access all por

tions of the register file simultaneously, the two external format memory instructions 

access different portions of the file. For this reason, independent controls for each portion 

of the register file are used only for reads and writes to and from bus A. 

4.2.4:. Arithmetic Control Machine 

The sequencing of arithmetic instructions IS handled by the state machine and 

machine cycle counter illustrated in Figure 21. Both these sequencers begin operating on 
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Figure 21. Organization of Arithmetic Control Unit. 

the first execution cycle of an arithmetic instruction. The cycle counter controls the data

path directly throughout the execution of the instruction and signals the arithmetic state 

machine when all results have arrived at the destination latches. The state machine in 
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turn monitors the trap and suspend signals during instruction execution while controlling 

the writing of results and the fpuBusy line. The machine will never stop the execution 

cycle counter on a suspension hut instead will delay the result write. In addition, the 

counter will be reset by the state machine if the instruction finishes or is trapped. 

As seen in Figure 22, the arithmetic state machine is implemented using eight states. 

Transition Vector := < ctrl-start-arithop, ctrl-fpuSuspend, ctrl-STOP > 

NOTE: Signal ctri-TRAPRecvd overrides Transition Vector. 

Figure 22. Arithmetic State Machine Diagram. 

Since the execution of the FPU instruction continues during suspension, an instruction 

may finish before the CPU instruction pipeline has proceeded two cycles. Because of this, 

separate states are required to sequence the first two non-suspended execute cycles because 

all instructions may be trapped during this period. In addition, an extra "early wait" 

state is needed for those instructions that are suspended just after the instruction cycle. 

After these cycles have been completed, non-suspended instructions will always com

plete and write results without trapping. These instructions move to the "safe" state or 



- 46-

directly to the write state if they already have completed. Suspended instructions must 

remain in a trappable state until the pipeline suspension has released. An extra state (the 

"prepare to write" state) is necessary for instructions completed during suspension to shut 

off the machine cycle counter immediately upon instruction completion. Finally, the 

machine may transit from the write cycle to inactivity or to the first execute cycle. 

Note that this final transition allows the overlapping of the write cycle of an FPU 

instru<"4.ion with the fetch cycle of the subsequent one. This overlapping also affects the 

implementation of the machine cycle counter, moving the clear signal for the counter to 

phi4. Ordinarily, both the state machine and cycle counter are master/slave devices that 

make their transitions as described in the section on control timing. Except for this com

plication of the clearing condition, both portions of the sequencer are implemented in a 

very straightforward manner. 

The rest of the arithmetic control unit is distributed among the various datapath 

blocks. Each block receives the decoded opcode vector, both the master and slave of the 

cycle counter, and all four clock phases. Almost all of the detailed control signals are sim

ple combinations of this state information. The only notable exception to this is the 

multiply/divide accumulator loop which uses an extra flip-Bop as a sequencer. Because 

the loop is active for many clock cycles, the extra state bit proved easier than a partial 

decoding of the cycle counter to implement in Slang. 

5. FUNCTIONAL TESTING 

5.1. Introduction 

\Vhile the FPU hardware description is useful as documentation, its primary purpose 

is to verify the chip's logic and circuitry. The first step in this verification process is the 

testing of the description itself. Fortunately, a ready made suite of Boating point vectors 

is available for testing the arithmetic of any implementation of the IEEE standard. These 

test vectors (collectively known as the IEEE test suite) were adapted to serve as input vec

tors for the functional testing of this chip. The adaptation process required both a pro

gram to customize the content and formatting of the IEEE test suite and a set of func

tions to run the resulting diagnostics through the description. The format customization 

step is run separately from the simulator and generates files containing the test vectors 
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and the expected results. The simulator in turn has been enhanced with special functions 

to generate SPUR FPU diagnostics from these files, drive the FPU description, and check 

the results given by the hardware. 

5.2. IEEE Format Converter 

As mentioned above, the IEEE test suite customization step is run as a separate pro

cessing step outside the Slang simulator. It converts the operand, precision and rounding 

mode specification of every test vector into an intermediate format which can be easily 

converted to SPUR diagnostics. Because the chip implements a subset of the standard, 

the expected result vectors must also be adjusted to reflect the result and FPSW gen

erated by the hardware. The details of this conversion step are beyond the scope of this 

report, however a description of the details of the input and expected result file formats is 

in Appendix B of this document. 

5.3. Slang Testbed 

The Slang hardware description language has very few functions built in for running 

preformed diagnostics. Thus, all of the functions that form the testing environment for 

the FPU description were written from scratch. This homemade testbed consists of func

tions for initializing and driving the simulator, transforming the input test vectors into 

FPU instruction sequences, and checking the hardware results for the sequence against the 

expected results. Besides reading the input and expected results files mentioned above, 

the testbed generates a error file that documents the success or failure of each test vector. 

In addition to these functions, extra Slang nodes have been added to the hardware 

description; these nodes drive the CPC-FPU interface, supply instructions and data to the 

chip and collect the result data. These nodes provide the execution environment for the 

FPU chip and totally control the simulation once it has started. 

Currently, a very simple execution model is used for testing the chip. A translator 

function converts test vectors into a sequence of instructions to load the operands of the 

test, execute the target arithmetic instruction and store the result. A single node (called 

the "executor") drives the interface, supplying the instructions one at a time to the chip. 

Another node (the "verifier") detects the end of every instruction and collects the results 

of every store instruction. At the end of every sequence, the verifier node calls a check 

function to verify the results, and the executor node calls the translator function to form a 
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new sequence. This process is repeated until no more test vectors are available. 

The above model provides the simplest method for testing the validity of the arith

metic performed by the chip. However, it does not test the capabilities of the chip control 

such as traps, suspends and parallel executiono Furthermore, still other testing capabili

ties will be needed to use the FPU description as a layout verification tool. All of these 

capabilities may be achieved, however, by making modifications and possibly additions to 

the two nodes described above. 

6. SLANG IMPLE:MENT ATION NOTES 

The previous sections of this report have illustrated the flexibility of Slang as a 

hardware description language and as a simulation tool. However, that flexibility has 

caused several problems with the structure of the chip description. The worst of these 

problems is the absence of Slang constructs for coding separate chip component descrip

tions as separate modules. Because a Slang node may connect to any other node on the 

chip, it is very difficult to determine from Slang the interfaces between major components 

of the chip. The resulting lack of modularity reduces the readability of the entire descrip

tion and makes incremental testing of chip components almost impossible. Other prob

lems were encountered during the implementation of particular components of the descrip

tion; these are described separately in the sections that follow. 

6.1. Datapath 

Several difficulties arose while writing the Slang description for the datapath com

ponents. The most notable of these is the lack of any support in Slang for numeric values 

containing more than 32 bits. Because of this, all floating point fractions in this descrip

tion are represented as three element lists. Although many Slang functions (such as mul

tiplexing) are data type independent, special arithmetic functions had to be written in 

Lisp to handle the new data type. These functions had to handle Slang constructs such as 

UNK as well. 

Another related problem was the inability to explicitly declare the size of Slang node 

values. \Vhile the correct size for a given node could always be maintained by special 

functions, the correct size for a given numeric value is often impossible to determine from 
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the description. Thus, portions of the Slang description for the load/store and fraction 

datapaths are confusing to read because operands change size between nodes in an opaque 

manner. 

Finally, this description contains its own model for all busses, replacing a Slang bus 

model that was difficult to use and virtually undocumented. The FPU bus model 

currently takes into account precharging and gives error messages when glitches affect the 

bus or multiple values are driven on the bus simultaneously. It is also very easy to deter

mine from the model which signals gate onto a particular bus. Unfortunately, Slang does 

not support the notion of bi-directional signals. Thus, it is difficult to determine which 

components are taking values from the bus at a given time. 

6.2. Control 

The hardware description of the FPU control section relies heavily on homemade 

Slang primitives for latching and timing. In this description, a latch node is implemented 

as a multiplexor whose select signal feeds its output back to the node. The logic nodes 

that depend on that latch will not evaluate when the latch control signal is inactive 

because the actual data value in the latch does not change. Thus, all latches (even those 

in data loops) may be controlled successfully by simply gating the control signal with the 

appropriate clock phase. The clock phases themselves are derived from a special node 

called masterclock which is guaranteed by Slang to be the first event scheduled in each 

evaluation sequence. The function of the masterclock node is programmer definable; here 

it is a mod 4 counter which is then decoded into four separate clock phase signals. 

Given the primitives mentioned above, the implementation of the control section 

description is relatively straightforward. The only difficulty encountered in the control 

section concerns the timing of the register file and bus operations. A successful read or 

write requires that the exchange of data between these components occur in the proper 

order within one clock phase. This is done by manipulating the depends clause for these 

nodes and by adding extra nodes to delay the evaluation of the register file control. 

The pipeline for the memory control unit was implemented in a manner similar to 

portions of the datapath description. The arithmetic state machine consists of only one 

node. This node contains a single cond clause (LISP equivalent of case statement) where 

each condition corresponds to a transition in the state machine. Finally, all of the 



-50-

combinational logic in the control section IS implemented usmg simple AND, OR and 

Equal (decode) clauses. 

7. CONCLUSIONS 

The SPUR floating point unit increases the performance of IEEE arithmetic by 

efficiently implementing the most common arithmetic operations in hardware. To further 

increase performance, the execution of arithmetic instructions may be overlapped with 

CPU instructions as well as FPU load and store operations. This requires an internal 

organization containing separate datapath sections for memory and arithmetic operations; 

the register file is shared between the datapath sections. Within each of the sections, 

separate datapath components are devoted to the different FPU operand data portions. 

Many of the datapath components participate in more than one instruction sequence, how~ 

ever. The control structures for the chip are also divided into arithmetic and memory 

sections; these sections both rely on the instruction decoder and CPU-FPU interface for 

input signals. The two structures are organized differently to meet separate instruction 

control requirements. 

Currently, the chip hardware description is being tested using the IEEE test suite for 

input vectors. Later, the description will be used alongside a switch level circuit simulator 

to verify the chip layout. In addition, the debugged version of the description will serve 

as a guide in the final datapath layout and control generation steps for the chip. Thus, 

the same hardware description will serve as a testing and as a documentation tool. 

This adaptation of the same chip description to different purposes is made possible 

by the flexibility of the Slang hardware description language. This flexibility also has 

resulted in a disturbing lack of structure in the chip description, however. Furthermore, 

the coding of the description was hampered by the lack of modularity and arithmetic sup

port for large vector operations. Overall, Slang should be improved significantly in these 

areas before another large chip description effort is undertaken. 

As with all large projects, this chip description was by no means a solitary effort. As 

the two faculty advisors for this project, Randy Katz and Carlo Sequin have provided the 

leadership necessary to guide this work through to completion. George Taylor provided 

the algorithms for the chip's arithmetic. His experience with floating point hardware 
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resulted in algorithms that were efficient in both time and chip area. Finally, much of the 

information input to this description has come from the full time members of the SPUR 

FPU project group, B.K. Bose, Paul Hansen and Corinna Lee. In a sense, this hardware 

description is a fusion of their efforts on the implementation, interface and architectural 

aspects of the chip respectively. Also, it is their responsibility to take the hardware 

description and use it in their effort to complete the implementation of the chip. 
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The following is a table for each instruction currently supported in the 
SPUR FPU unit. 
The table contains the exact sequence of operations required 
to complete that instruction as wei I as the control signals and datopath 
components required to perform that operation. 
These tables is not intended to describe the rationale of the FPU datopoths 
or control. 
It does, however, i I lust rate the timing and control requirements on the 
datopoth components, and it wi I I give an i I lustration of the use of shored 
resources {reg. file, busses, dotopoth components) in the FPU. 
The sequences for the actual instructions ore given in three files (one 
for LD/ST, one for odd/sub, one for mul/div). 
This file contains information on oil uses of the register file 
ond busses. 

REGISTER FILE ACCESSES 

TI~E/SIGNALS/CO~PONENTS 

1-4, phi4,fpu-RS1pin, 
ctrl-regnumbA 

1-4, phi4,fpu-RS2pin, 
ctrl-regnumbB 

2-1, ctrl-reod-regsA, 
!froc,expn,sign!-regfi le 

2-1, ctrl-read-regsB, 
lfroc,expn,sign!-regfi le 

4-2, ctrl-regnumbA 
ctrl-lotch-regnumbA 

4-3, ctrl-write-regsA, 
lfroc,expn,sign!-regfi le 

??-2, ctrl-regnumb8, 
ctrl-lotch-regnumb8 

??-3, ctrl-write-regs8, 
lfroc,expn,sign!-regfi le 

COMMENTS: 

ACTION/CO~I.4ENTS 

Send RS1 to regi!ter file for reading onto 
A bus. Must be done in parallel with 
operation decoding. 

Send RS2 to register file for reading onto 
B bus. ~ust be done in parallel with 
operation decoding and is therefore done 
without knowing whether on actual read wi II 
toke place. 

Read value onto regi!ter Abu!. Should 
read on stores and arithmetic operation! 
and if not !uspended. 

Read value onto register 8 bus. Should 
read only on arithmetic operations if not bu!y 
and if not !uspended. 

Load regi!ter decode latch for write 
from A bus. The register number come! 
the load/store opcode !tate vector! 

Write value from regi!ter A bus. 
write only on stores. 

Should 

Load regi!ter decode latch for write 
from 8 bus. The register number comes 
a temporary Iaten where the destination 
register number is held throughout the 
or i thmet i c operation (ct r 1-regnumbTt.lP). 

Write value fror~ register 8 bus. Shoulc 
write only in the write cycle of arithmetic 
operations. 

1) Regi!ter file is arranged such that all reads occur in phi1 and oil 
writes occur in phi3. 

2) There is no conf I ict becau!e both !ources of a read (store t 
arithmetic operation) occur in the some cycle. 

3) Although writes from arithmetic operations and load! can happen 
in the !orne cycle, they occupy different bus!e!. Thi! implies 
a dual-port write register file. 

BUS ACCESSES 

TIME/SIGNALS/COMPONENTS 

2-1 , c t r I-re ad-reg! I A. Bl , 
lfrac,expn,sign!-reg-jo,bj, 

ACTION/COMMENTS 

Read out content! of regi!ter file onto 
regi!ter file bu!ses. 
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jfrae,expn,signJ-reg-busJA,8J. 

2-1 ,et r !-gate-regs-busses, 
lfrae,expn,sign~-reg-busJA,8J 
ifroe,expn,sign -busiA.8J. 

2-3,etrl-gote-frocb-PPSslove, 
froc-b,md-PPS-slave,frac-bus8 

Connect register file onto arithmetic unit 
busses on arithmetic operations. 

On divides, route dividend into partial 
remainder latch to start operation. 

3-1,froc-intermed,froc-bus8 Route complemented dividend,multipl icond 
ctrl-gate-froeintermed-froc8us8 to selection latch on multiplies/divides. 
md-compmcd-lotch. 

4-3,reg-loodlotch-slove, Gate different portions of a load operation 
etrl-gate-loadlotch-ifrac,expn,signJ8us, 

onto register file busses for write to 
lfrae,expn,signJ-reg-busA. register file. 

16-3,20-1 J ,md-PPfS,CJ-resul t, 
etrl-gote-PPS/C-froc8us, 
froc-busJA,8J,froc-addleft, 
froc-right. 

P-3,22-1J,expn-bus8, 
ctrl-gote-expndest-expn8us8, 
expn-dest,expn-right. 

21-1 , c t r I -gate-quo t i en t- f r a c 8 us 
f r a c-b us I A . 8 J , m d- po s q- res u I t , 
md-negq-result,froc-oddleft, 
froc-right. 

? ?-3, e t r 1-w r i te-o r i t h res u I t s, 
ctrl-gote-expndest-expn8us8, 
jfroc,expn,signJ-dest, 
jfroe,expn,signJ-bus8. 

??-3,ctrl-write-orithresults, 
jfroc,expn,sign~-bus8. 
jfroc,expn,sign -reg-bus8. 

Gate results of multiply and partial 
remainders of divide for final 
accumulation in fraction box. 

On multiplies and divides, route initial 
result exponent bock to exponent ALU for 
computation of final result. 

Gate quotients to fraction for final 
accumulation on divides. 

Place all orrithmetic results on bus 8 
to be written bock to register file. 

Connect arithmetic unit busses to register 
file busses on register file write. 
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Sequence Tobie for Add/Subtract Instructions 

TIME/SIGNALS/COMPONENTS 

ADD/SUBTRACT 

ACTION/COMMENTS 

NOTE: Register file activity already described in its own section. 

2-1. ctrl-gote-regs-busses, Connect register file output to main 
ffroc,expn,signl-reg-busjA,BI dotopoth busses. 
jfrac,expn,signl-busjA,BI 

2-1, ctrl-latch-moinops, 
ctrl-lotch-signops, 
ctrl-lotch-expndiffs, 
frac-o,froc-b,sign-a, 
sign-b,expn-o,expn-b 

2-2. ctrl-latch-expnshamt 
expn-shomt,expn-ge128, 
expn-BgtA. 

2-l3.4l,froc-lleft,rightl. 

ctri-MD/AS,froc-right-prenorm 
f r a e-ll e f t , r i g h t l-AS. 

2-3,expn-BgtA-tmp, 
ctrl-lotch-expnodder-inleft, 
expn-left. 

2-4,ctri-S/A-op, 
ctrl-frocodder-op, 
sign-dest. 

3-1 , c t r 1- I o t c h- f r a cod de r- i n 

3-11 , 2 I . c t r I - f roc odd e r- o p , 
ctri-MO/AS,froc-oddleft, 
froc-corryin,froc-right, 
free-odder-result. 

3-3,ctrl-lotch-frocintermed 

j3-4,4-1l,sign-intermed, 
froc-roundmode,sign-result 
froc-obs-intermed, 
froc-encoder-moinin, 
froc-S/A-expn, 
froc-normdist-shifter. 
f roc-Sh if t-GT 1. 

Latch dotopoth inputs at !fraction, 
exponent,signl boxes. 

Latch in difference vectors, result of 
exponent comparison. 

Choose number with greatest exponent and 
route to the left. Shift right hand 
fraction by expn-shomt for decimal point 
alignment (generating roundbits). 
Pass through entry multiplexors for 
multiply/divide input. 

Select greater of input exponents and 
route to left side of exponent ALU for 
generation of result exponent. 

Generate the control for determining 
whether on actual subtraction should be 
done, as well the result sign. 

Latch output of alignment section and pass 
through to orithemetic unit. 

Complement left hand input and assert 
corry input if subtract. Do actual addition. 

Latch in signed intermediate result. 

Handle pre-normolizotion,rounding 
of incrementing of result fraction. 
Generate exponent adjustment distance 
and exponent odd/subtract signal. 

(NOTE: Should latch in again in 4-1, b·Jt don't yet in the SLANG.) 

13-4. 4-1 ! . 
froc-encoder-zerodet, 
froc-normdist-encoder, 
froc-result,froc-dest, 
ct r 1-1 otch-f rocdest. 

4-j1,2! ,expn-S/A-ctrl, 
ctrl-lotch-expnodder-inright, 
expn-r i ght, expn-resu It, 
ex p n-o p- r i g h t , ex p n-car r y i n . 

14-31 ctrl-lotch-expndest, 
expn-dest, f roc-dest, 
sign-dest, 
c t r I -w r i te-ar i t h res u I t s 
ctrl-gote-busses-regs. 

Do final normalizing shift of fraction and 
generate zero-detect signal. Latch 
result into destination latch. 

Add or subtract normalizing distance to 
form the final result exponent. 

Latch in final exponent and write all 
results bock to register file. 

(NOTE: Will move exponent result write to phi2.). 



Sequence Table for ~ultiply Instruction 

TI~E/SIGNALS/CO~PONENTS 

~ULTIPLY 

ACTION/CO~~ENTS 

NOTE: Register file activity already described in its own section. 

2-1, ctrl-gate-regs-busses, Connect register file output to main 
lfrac,expn,signf-reg-busfA,BI datapath busses. 
ftrac,expn,signf-busfA,Bf 

2-1,ctrl-latch-mcds, 
md-mcd-latch,md-mpr-latch. 

2-1,ctrl-latch-fracadder-in, 
ctri-~0/AS,ctrl-fracadder-op, 
frac-left,frac-right. 

2-1 1,2f,ct rl-f racadder-op, 
ctri-~0/AS,frac-addleft, 
frac-carryin,frac-right, 
frac-adder-result. 

2-3,ctrl-latch-fracintermed 

2-1,ctrl-latch-signops 

2-1,ctrl-clear-selmrb, 
md-selmrb. 

2-1 , ex p n- I e f t , ex p n- r i g h t , 
ctrl-latch-expnadder-inleft 
ctrl-latch-expnadder-inright. 

2-11,21. expn-S/A-ct r I, 
expn-op-right,expn-carryin, 
expn-result. 

2-3,ctrl-latch-expndest, 
expn-dest. 

2-4,ctrl-latch-signdest, 
sign-dest. 

2-4,ctrl-clear-PPS/C-master, 
md-PPjS,CI-moster. 

3-1,ctrl-latch-compmcds, 
md-compmcd-latch 
!roc-busS. 

3-1,ctrl-mul/div-lotch 

3-1,ctrl-lotch-PPS/Cslove, 
md-PP!S.CI-slove, 
md-xtrobits-slave, 
md-roundodder-PPIS/C!Iotch. 

3-1,ctrl-lotch-8oothrcd, 
md-boothresult-mpy, 
md-boothresult-lotch. 

3-2,ctrl-lotchPPfS,C!-moster, 
md-mcdmuxf1-4,inf, 
md-csa-suml1-4f, 
md-csa-carryf1-4l. 

3-2,ctrl-inc-selmrb, 

Latch multiplicand and multiplier 
into input section. 

Latch multiplicand into left hand side 
of fraction box. Place 0 in the right 
side, causing multiplicand to be complemented. 

Complement left hand input and do on 
addition to form complement. 

Latch in multiplicand complement. 

Form result sign by XORing input signs. 

Clear multiplier byte counter. 
Start Booth recoding for 0th byte. 

Latch input exponents into exponent ALU to 
form initial result exponent. 

Add input exponents for initial result. 

Latch initial result into destination. 

Latch in result sign. 

Clear master of multiply result latch. 
Also clear master of sticky bit accumulator 
latch. 

Gate complemented multiplicand onto 8 
bus and latch at multiplicand input 
section. 

Activate a latch to control multiply/ 
divide pipeline. Loop starts on an odd phose 
with the loading of the result slave latches 
and the latching out of the recoded multiplier 
byte. The result vectors propagate to 
the carry save adder stage while the 
multiplier byte is used to select different 
versions of the multiplicand. 

latch in initial value of result slave latches 
for both the main and rounding results. 
These should both be zero initially. 

Latch receding of 0th multiplier byte 
to multiplicand selector multiplexors. 

Propagate multiplicands through selection 
multiplexors. Add to previous iteration's 
results and latch in result master. 
(Addition is corry-save!!). 

Increment byte counter and recode next byte 
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md-selmrb,md-mpr-byte, 
md-selmrb,md-boothresult-mpy, 

3-2,ctrl-lotchPPS/C-moster, 
md-roundodder-dest, 
md-xtrobits-dest, 
md-xtrobits-moster, 
md-xtrobits-corryout. 

3-3,ctrl-lotch-PPS/Cslove, 
md-PPlS,Cl-slove, 
md-xtrobits-slove, 
md-roundodder-PPIS/Cllotch. 

of multiplier. 

Compute sum of the eight rounding bits for this 
iteration. Route the corry out of this 
addition to the rightmost bit of the corry 
result vector for the next iteration. 
Perform on OR on the eight result bits to form 
the sticky bit for this iteration. 

Move results to slave latches for next 
iteration. Note that slave roundbit latch 
is accumulated into roundbit addition ORing. 

I NOTE: 
one. l 

Pi p e I i n e com p I e t e s o toto I of n i n e i t era t i on s ( e i g h t oft e r t h i s 

7-2,ctrl-lotch-PPS/Cmoster, 
md-PPIS.Cl-moster, 
md-PPfS,Cl-result, 
md-corryin-mulop, 
md-roundbits-mulop, 
md-roundodder-dest, 
md-xtrobits-moster. 

7-3,froc-corryin-IIAD, 
froc-roundbits-IIAD, 
ctrl-gote-PPS/C-frocBus, 
md-PPIS,Cl-result, 
froc-busfA,Bl. 

7-3,ctrl-lotch-frocodder-in 

7-lJ,4l.ctrl-frocodder-op, 
ctri-IIAD/AS,froc-oddleft, 
froc-corryin,froc-right, 
f roc-odder-resu It. 

8-1 , c t r I- I at c h- f roc i n termed 

Load in final result of multiply. Shift 
result by one and concatenate uppermost 
bit of rounding odder. Rest of odder 
result wi I I make up rounding bits. 

Gate result vectors, 
fraction box odder. 
to that addition. 

rounding bits to 
Also send corry input 

Latch output of alignment section and pass 
through to orithemetic unit. 

Do actual partial product addition. 

Latch in signed intermediate result. 

(NOTE: The path to the final result is the some here as it is for the 

odd/subtract instruction. Please see that table for additional 

exp I onot ion.) 

8-3,expn-dest ,expn-b, 
ctrl-gote-expndest-expnBusB. 
ctrl-lotch-expnb,expn-busB. 

8-3,expn-left, 
ctrl-lotch-expnodder-inleft. 

Feed initial result exponent bock to exponent 
input B for generation of final result. 

Latch initial result through to left side 
of exponent ALU. Prepare for addition of 
normalizing distance in order to form 
final result. 

(NOTE: Addition of normalizing distance 
does in the odd/subtract instruction. 
8-4.) 

occurs in some way as it 
Exponent result is latched in 

9-3,ctrl-gote-busses-regs, 
expn-dest,froc-dest, 
sign-dest, 
c t r I -w r i te-o r i t h res u I t s. 

Write oil results bock to register file. 
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Sequence Table for Divide Instruction 

TI~E/SIGNALS/CO~PONENTS 

DIVIDE 

ACTION/CO~~ENTS 

NOTE: Register file activity already described in its own section. 

2-1, ctrl-gote-regs-busses, Connect register file output to main 

l froc,exp
n,sign~-reg-busiA.Bl dotopoth busses. 

froc,expn,sign -busiA.BI 

2-1,ctrl-lotch-mcds, 
md-mcd-lotch,md-mpr-lotch, 
froc-o,froc-b. 

2-1 ,ctrl-lotch-frocodder-in, 
ctri-~D/AS,ctrl-frocodder-op, 

froc-left,froc-right. 

Latch divisor and dividend into input section. 

The divisor goes into the same latch used 
by the multiplier in the multiply 
instruction, while the dividend occupies the 

multiplicand latch. NOTE: We also latch 

the operands into the fraction box input 
latches. 

Latch dividend into left hand side 
of fraction box. Place 0 in the right 

side, causing dividend to be complemented. 

(NOTE: Dividend complementation proceeds in a manner similar to 

multiplicand complementation in the multiply instruction.) 

2-1,ctrl-latch-signops 

2-1 , ex p n- I eft , ex p n- r i g h t • 
ctrl-latch-expnadder-inleft 
ctrl-latch-expnadder-inright. 

Form result sign by XORing input signs. 

Latch input exponents into exponent ALU to 

form initial result exponent. 

(NOTE: Initial result exponent generation and sign result generation 

proceeds as seen in the multiply instruction.) 

2-2,ctrl-clear-PPS/C-master, Clear master of divide result latch. 

md-PPIS.Cl-moster. 

2-3,ctrl-gate-fracb-PPS1ave, 
ctrl-mux-PPSiove-in, 
f rac-b. f r ac-busB, 
md-PPIS.C!-slave, 
ctrl-latch-PPjS,CJ-slave. 

2-4,ctrl-clear-quotients, 
md-jpos.negJquotient-latch. 

3-1,ctrl-latch-compmcds, 
md-compmcd-latch 
frac-busB. 

3-1 , c t r I -m u I I d i v- I at c h 

3-1 ,md-qboxpla-divin, 
md-qboxodder-injleft, right!, 
md-qboxpla-dsrin. 

Load dividend (which was contained in the 
f rac-b I etch) onto 8 fraction bus and into 

remainder result slave latch (formerly known 

as the partial product latch). Note that the 

other partial remainder latch is loaded 
with the zero contained in the master latch. 

Clear quotient estimeote latches. 

Gate complemented dividend onto B 
bus and latch at dividend (formerly 
multiplicand) input section 

Activate a latch to control multiply/ 
divide loop. The divide loop officially 
starts in on odd phose witt- the generation 

of the quotient estimate based upon the divisor 

and partial remainder vectors. 
In even phases, the partial quotient is used 

to select different versions of the 
multiplicand. This result and the previous 

partial remainder ore accumulated and 
latched to form the new port iol remainder. 

This selection/accumulation process uses 
the some hardware employed for partial 
product generation in the multiply 
instruction. NOTE: This is a single loop, 

NOT a pi pel inell The only constraint on this 

hardware is that the entire loop must complete 

in two clock phases. 

Start divide loop by setting up inputs to 
the quotient estimation PLA. For first 
input, odd together topmost eight bits of 

partial remainder vectors and toke topmost 

six bits of that result. Other input consists 

of the topmost four bits of the divisor. 
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3-l,md-qboxplo-mux-out, 
md-qboxplo-quotient-out, 
md-posq-dest, 
md-negq-dest. 

3-2,ctrl-lotchPPfS,Cl-moster, 
md-mcdmux1, 
md-cso-suml1-4l. 
md-cso-corryi1-4J. 

3-2,ctrl-shift-quotients, 
md-fpos,negJquotient-lotch. 

3-3,ctrl-lotch-PPS/Cslove, 
md-PPIS.CJ-slove. 

Quotient estimation PLA output appears in two 
forms. One form is a "one-hot" encoding that 
drives the selection of the next dividend. 
The other is on encoding that is broken into 
two bit estimation vector that is either 
positive or negative. 

Propagate dividend through selection 
multiplexors. Add to previous iteration's 
results and latch in result master. 
Note that only one selection multiplexor 
is needed here. 

Latch in first quotient esimotion. 

Shift portio! remainders to the left by 
two ond move to slave latches for next 
iteration. 

I NOTE: Loop completes o total of 34 iterations {33 after this one). 

19-4,ctrl-lotch-PPS/Cmoster, 
md-PPIS.CJ-moster, 
md-PPjS,Cl-result, 
ctrl-shift-quotients, 
md-fpos,negJquotient-lotch. 

2 0-1 , f roc-bus I A , B l , 
froc-roundbits-MD. 
ctrl-9ote-PPS/C-frocBus, 
md-PP!S,Cl-result. 

Load in final remainder of divide 
ond the rightmost two bits of quotient. 

Gate partial remainder vectors onto fraction 
busses to fraction box odder. 

I NOTE: Alignment of these vectors is current INCORRECT in the Slong.J 

2 0- 1 , c t r I - I a t c h- f r o cod de r- i n 

20-f1,2J,ctrl-frocodder-op, 
ctri-MD/AS,froc-oddleft, 
froc-corryin,froc-right, 
froc-odder-result. 

20-3,ctrl-lotch-frocintermed 

20-3,ctrl-lotch-remsign, 
froc-remsign-lotch. 

20-4,md-quotient-roundbits, 
froc-remsign-lotch, 
md-posq-result, 
md-negq-result, 
md-roundbits-divop, 
md-corryin-divop. 

21-1 ,froc-corryin-MD, 
froc-roundbits-MD, 
ctrl-gote-quotientfrocBus, 
md-posq-result,froc-busjA,SJ, 
md-negq-result. 

21-1,ctrl-lotch-frocodder-in 

21-f1,2J,ctrl-frocodder-op, 
ctri-MD/AS,froc-oddleft, 
froc-corryin,froc-right, 
froc-odder-result. 

21-3,ctrl-lotch-frocintermed 

Latch output of alignment section and pass 
through to arithemetic unit. 

Complement left hand input and assert 
corry input. Do actual subtraction. 

Latch in signed intermediate result. 

Toke sign of the partial remainder. 
NOTE: This is the only port of the 
port iol remainder needed to form the 
final quotient. 

Prepare positive and negative quotient 
estimate vectors for final subtraction. 
Must actually do subtraction to form 
the three rounding bits, using the sign 
of the partial remainder as the corry input 
of this subtraction. The corry output of 
this subtraction is cascaded to the 
final quotient subtraction. 

Gate quotient vectors, rounding bits to 
fraction box odder. Also send corry input 
to that subtraction. 

Latch output of alignment section ond pass 
through to orithemetic unit. 

Do quotient estimate subtraction. 

Latch in signed intermediate result. 

(NOTE: The path to the final result is the some here as it is for the 
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add/subtract instruction. 
explanation.) 

Please see that table for additional 

22-1 ,expn-dest,expn-b, 
ctrl-gate-expndest-expnBusB, 
ctrl-latch-expnb,expn-busB. 

22-1 ,expn-left, 
ctrl-lotch-expnodder-inleft. 

feed initial result exponent back to exponent 
input 8 for generation of final result. 

Latch initial result through to left side 
of exponent ALU. Prepare for addition of 
normalizing distance in order to form 
final result. 

(NOTE: Addition of normalizing distance occurs in same way as it 
does in the odd/subtract instruction. Exponent result is latched in 
22-2.) 

22-J,ctrl-gote-busses-regs, 
expn-dest,froc-dest, 
sign-dest, 
c t r I -w r i t e-o r i t h res u I t s . 

Write all results bock to register file. 
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Sequence Table for Load/Store Instructions 

TIME/SIGNALS/COMPONENTS 

1-4, ctrl-ste1Ct1, 
reg-storelotch-moster 

1-4, phi4,fpu-RS1pin, 
ctrl-regnumbA 

2-1, etrl-storelotch-master, 

reg-storeloteh-moster 

3-1. etrl-storelotch-slave, 

reg-storelotch-slove 

3-1, etrl-octivote-dotopins, 

fpu-DATApin, 
etrl-store-memcycle. 

TIME/SIGNALS/COMPONENTS 

3-3, ctrl-octivote-dotopins, 

fpu-DATApin, 
ctrl-store-memcycle. 

3-3, ctrl-loodlatch-moster, 

reg-storelotch-moster. 

4-2. ctrl-loodlatch-slove, 

reg-loadlotch-slave. 

4-2. ctrl-regnumbA 
ctrl-latch-regnumbA 

4-3. ctrl-gote-loodlatch 

ifrocBus,expnBus.signBus! 

STORES 

ACTION/COMMENTS 

Choose between fraction bus and eiCponent/ 

sign bus for store operation. Should be 

done as soon as decoding for opcode is ready. 

Send RS1 to register file for reading onto 

A bus. Must be done in parallel with 

operation decoding. 

Load master of output latch with result 

of multiplexor. 

Latch slave of output latch. Should start 

driving pads. Should NOT relatch when 

suspended. 

Should drive pods at this point. On stores, 

value driven out should be held unti I cache 

hit signal is received (or Trap occurs).???? 

LOADS 

ACT! ON/COMMENTS 

On I oads, pads shou I d be set to input 

mode on every phi3 where a load is in 

the memory cycle. 

Load in master of input latch at same 

phase as data arrives from cache. 

Load slave latch and prepare to write 

to register file. 

Load register decode latch for write 

from A bus. The register number comes 

the load/store opcode state vector! 

Gate slave of input latch to either 

fraction bus or exponent/sign bus based 

on type of load being performed. 


